Driving risk assessment using near-crash database through data mining of tree-based model.

نویسندگان

  • Jianqiang Wang
  • Yang Zheng
  • Xiaofei Li
  • Chenfei Yu
  • Kenji Kodaka
  • Keqiang Li
چکیده

This paper considers a comprehensive naturalistic driving experiment to collect driving data under potential threats on actual Chinese roads. Using acquired real-world naturalistic driving data, a near-crash database is built, which contains vehicle status, potential crash objects, driving environment and road types, weather condition, and driver information and actions. The aims of this study are summarized into two aspects: (1) to cluster different driving-risk levels involved in near-crashes, and (2) to unveil the factors that greatly influence the driving-risk level. A novel method to quantify the driving-risk level of a near-crash scenario is proposed by clustering the braking process characteristics, namely maximum deceleration, average deceleration, and percentage reduction in vehicle kinetic energy. A classification and regression tree (CART) is employed to unveil the relationship among driving risk, driver/vehicle characteristics, and road environment. The results indicate that the velocity when braking, triggering factors, potential object type, and potential crash type exerted the greatest influence on the driving-risk levels in near-crashes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applying Data Mining to Assess Crash Risk on Curves

The wide range of contributing factors and circumstances surrounding crashes on road curves suggest that no single intervention can prevent these crashes. This paper presents a novel methodology, based on data mining techniques, to identify contributing factors and the relationship between them. It identifies contributing factors that influence the risk of a crash. Incident records, described u...

متن کامل

Using Combined Descriptive and Predictive Methods of Data Mining for Coronary Artery Disease Prediction: a Case Study Approach

Heart disease is one of the major causes of morbidity in the world. Currently, large proportions of healthcare data are not processed properly, thus, failing to be effectively used for decision making purposes. The risk of heart disease may be predicted via investigation of heart disease risk factors coupled with data mining knowledge. This paper presents a model developed using combined descri...

متن کامل

Application of data mining techniques for real-time crash risk assessment on freeways

Data mining is the analysis of large "observational" datasets to find unsuspected relationships that might be useful to the data owner. It typically involves analysis where objectives of the mining exercise have no bearing on the data collection strategy. Freeway traffic surveillance data collected through underground loop detectors is one such "observational" database maintained for various IT...

متن کامل

Efficiency score assessment of Iranian Mining, Wood and Textile Industries

The Iranian Environment Protection Agency (IEPA) in collaboration with Iranian Industries Organization (IIO) need to design a relevant database for the industries information based on the initial screening of Iranian Evaluator Team (IET) in certain clusters. However, we aware of this fact that all industrial projects should go through the Environmental Impact Assessment (EIA) after and along wi...

متن کامل

Development of a Combined System Based on Data Mining and Semantic Web for the Diagnosis of Autism

Introduction: Autism is a nervous system disorder, and since there is no direct diagnosis for it, data mining can help diagnose the disease. Ontology as a backbone of the semantic web, a knowledge database with shareability and reusability, can be a confirmation of the correctness of disease diagnosis systems. This study aimed to provide a system for diagnosing autistic children with a combinat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Accident; analysis and prevention

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2015